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Literature Implementation 

Setup Coordinates: 
E: an inertial / fixed frame 
B: a body-fixed frame, of which the positive x direction aligns with the direction of the propeller 
arm relative to the center of mass of the body. The origin lies at the center of mass of the whole 
flyer. 
C: a control frame dependent on the  
State: 
𝜔"#" : the angular velocity of the body relative to the inertial frame expressed in the body frame 
𝜔$#" : the angular velocity of the propeller relative to the inertial frame expressed in the body frame 
𝐼"": the moment of inertia of the body (without the propeller) with respect to the body’s center of 
mass 
𝐼$": the moment of inertia of the propeller with respect to the propeller’s center of mass 
𝑒$": propeller force direction in the body frame 
𝜏(": air frame drag torque 
𝑓$: thrust of the propeller 
𝜏$: torque of the propeller 
u: the output thrust produced by the attitude controller 
𝜏+,-: time constant of the motor 

Calculate 𝜔$#"  The propeller’s scalar speed Ω with respect 
to the body is usually controlled by an 
electronic speed controller, so that 

 
Note that 𝜔$#"  can be decomposed as below: 

 

In order to implement the simulation, an 
assumption is made:	𝜔$"" ≫ 	𝜔"#" . Therefore, 

𝜔$#" ≈ 𝜔$""  
𝜔$"" = [0; 0; Ω], where Ω is the scalar rotation 
speed of the propeller, 

 

The relation 
between the total 
thrust f and 𝜔$#"  

Total thrust f produced by the propeller has 
the following relation with the angular 
velocity of the propeller relatively to the 
earth in the body frame 𝜔$#" . 

 

𝑓$ = 𝜅8Ω9 

𝜏$  𝜏$ = −𝜅;Ω9 
𝑓$̇ 𝑓$̇ = (𝑓>,?@-@,A + 𝑢 − 𝑓$)/∆𝜏+,- 
𝜔̇$#"  Not specified 𝑓$̇ = 2𝜅8ΩΩ̇ (6) 

Ω̇ =
𝑓>,?@-@,A + 𝑢 − 𝑓$
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𝜔̇$#" ≈ [0; 0; Ω̇] 



 
  
Angular 
Acceleration of 
the body in body 
frame 𝜔"#"̇  

From Euler’s Second Law, the angular acceleration of the body in the body frame 𝜔̇"#"  can be 
estimated. 
 

𝐼""𝜔̇"#" + 𝐼$"𝜔̇$#" + 𝜔"#" × (𝐼""𝜔"#" + 𝐼$"𝜔$#" ) = 𝑟$" × 𝑒$"𝑓" + 𝑒$"𝜏$ + 𝜏(" 
 
 

Control Frame C For convenience a control coordinate system C is introduced which is fixed with respect to the 
body-fixed coordinate system B and where 

𝑛" = ±
𝜔"#"NNNNN

O𝜔"#"NNNNNO
 

𝑛P = 𝐶P"𝑛" = [0; 0; 1] 
𝑛̇(R?"   𝑛̇(R?" = −𝜔"#" × 𝑛(R?"  
𝑛̇(R?P  Not specified 𝑛̇(R?P = −𝜔"#P × 𝑛(R?P  or 𝑛̇(R?P = −𝐶P" × 𝑛̇(R?"  
𝜔"#P  𝜔"#P = 𝐶P"𝜔"#"  

State variable s Let 𝑛(R?P = [𝜂T; 𝜂9; 𝜂U] and 𝜔"#P = [𝛼T; 𝛼9; 𝛼U] 
 

Notice only x and y components of 𝑛(R?P  are in s since 𝑛(R?P  is a unit vector and the third component 
can be calculated from the first 2. 

𝑠̇ Not Specified Define a matrix function  
𝑠̇ = 𝑓(𝑠, 𝑢) 

 
Then the linearized form is 

𝑠̇ = 𝐴𝑠 + 𝐵𝑢 
where attitude thrust output u has the form[𝑢]. 
The model is linearized around the hover solution, 
where 
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Two matrices A and B are obtained by 

𝐴 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 j
𝜕𝑓
𝜕𝑠l[,\R]

 

𝐵 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 j
𝜕𝑓
𝜕𝑢l[,\R]
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