Linearization Comparison

	Literature	Implementation	
Setup	arm relative to the center of mass of the body. flyer. C: a control frame dependent on the State: ω_{BE}^{B} : the angular velocity of the body relative t ω_{PE}^{B} : the angular velocity of the propeller relation I_{B}^{B} : the moment of inertia of the body (without mass I_{P}^{B} : the moment of inertia of the propeller with e_{P}^{B} : propeller force direction in the body frame τ_{d}^{B} : air frame drag torque f_{P} : thrust of the propeller τ_{P} : torque of the propeller u: the output thrust produced by the attitude co		
Calculate ω_{PE}^B	$\begin{aligned} \tau_{mot}: \text{ time constant of the motor} \\ \hline \text{The propeller's scalar speed } \Omega \text{ with respect} \\ \text{to the body is usually controlled by an} \\ \text{electronic speed controller, so that} \\ \omega_{PB}^{B} &= (0, 0, \Omega). \\ \hline \text{Note that } \omega_{PE}^{B} \text{ can be decomposed as below:} \\ \omega_{PE}^{B} &= \omega_{PB}^{B} + \omega_{BE}^{B} \end{aligned}$	In order to implement the simulation, an assumption is made: $\omega_{PB}^B \gg \omega_{BE}^B$. Therefore, $\omega_{PE}^B \approx \omega_{PB}^B$ $\omega_{PB}^B = [0; 0; \Omega]$, where Ω is the scalar rotation speed of the propeller,	
The relation between the total thrust <i>f</i> and ω_{PE}^{B}	Total thrust f produced by the propeller has the following relation with the angular velocity of the propeller relatively to the earth in the body frame ω_{PE}^{B} . $f_{P} = \kappa_{f}(\omega_{PE}^{B} \cdot e_{P}^{B}) \omega_{PE}^{B} \cdot e_{P}^{B} $	$f_P = \kappa_f \Omega^2$	
$ au_P$	$\tau_P = -\kappa_\tau (\boldsymbol{\omega}_{PE}^B \cdot \boldsymbol{e}_P^B) \boldsymbol{\omega}_{PE}^B \cdot \boldsymbol{e}_P^B $	$ au_P = -\kappa_ au \Omega^2$	
\dot{f}_P	$\dot{f}_P = (f_{position} + u - f_P)/\Delta \tau_{mot}$		
$\dot{\omega}^B_{PE}$	Not specified	$\dot{\Omega} = \frac{\dot{f_P} = 2\kappa_f \Omega \dot{\Omega} (6)}{\tau_{mot} + u - f_P} \cdot \frac{1}{2\kappa_f \Omega}$ $\dot{\omega}_{PE}^B \approx [0; 0; \dot{\Omega}]$	

	$ au_d^B = - $	$\left\ oldsymbol{\omega}_{BE}^{B} \right\ oldsymbol{K}_{d}^{B} oldsymbol{\omega}_{BE}^{B}$
Angular Acceleration of the body in body frame $\omega_{BE}^{\dot{B}}$	From Euler's Second Law, the angular acceleration of the body in the body frame $\dot{\omega}_{BE}^B$ can be estimated. $I_B^B \dot{\omega}_{BE}^B + I_P^B \dot{\omega}_{PE}^B + \omega_{BE}^B \times (I_B^B \omega_{BE}^B + I_P^B \omega_{PE}^B) = r_P^B \times e_P^B f_B + e_P^B \tau_P + \tau_d^B$	
Control Frame C	body-fixed coordinate system B and where n^B :	is introduced which is fixed with respect to the $= \pm \frac{\overline{\omega_{BE}^{B}}}{ \overline{\omega_{BE}^{B}} }$ $= \frac{1}{ \overline{\omega_{BE}^{B}} }$
\dot{n}^B_{des}	n - c	$\dot{n}^{B} = -\omega^{B} \times n^{B}$
\dot{n}_{des}^{C}	Not specified	$\dot{n}_{des}^{C} = -\omega_{BE}^{C} \times n_{des}^{C}$ $\dot{n}_{des}^{C} = -C^{CB} \times \dot{n}_{des}^{B}$
ω_{BE}^{C}	ω_{BF}^{c}	
State variable s	Let $n_{des} = [\eta_1; \eta_2; \eta_3]$ and $\omega_{BE} = [\alpha_1; \alpha_2; \alpha_3]$ $s = (\eta_1, \eta_2, \alpha_1, \alpha_2, \alpha_3, f_P) - (0, 0, 0, 0, \pm 1)$	
Ś	Not Specified	Define a matrix function $\dot{s} = f(s, u)$
		Then the linearized form is $\dot{s} = As + Bu$ where attitude thrust output <i>u</i> has the form[<i>u</i>]. The model is linearized around the hover solution, where $s_{hover} = \begin{bmatrix} 0\\0\\0\\0\\0\end{bmatrix}$ $u_{hover} = [0]$
		Two matrices A and B are obtained by $A = Jacobian \left(\frac{\partial f}{\partial s}\right)_{hover}$ $B = Jacobian \left(\frac{\partial f}{\partial u}\right)_{hover}$

$s_{hover} = \begin{bmatrix} 0\\0\\0\\0\\0\\0\end{bmatrix} u_{hover} = \begin{bmatrix} 0 \end{bmatrix}$	
--	--

References:

Zhang, W., Mueller, M. W., & Dandrea, R. (2016). A controllable flying vehicle with a single moving part. *2016 IEEE International Conference on Robotics and Automation (ICRA)*. doi:10.1109/icra.2016.7487499

$$\frac{\partial (f_{position} + u - f_P) / \tau_{mot}}{\partial u} = 1 / \tau_{mot}$$